SKD 145

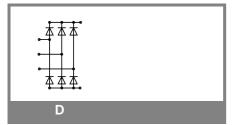
Bridge Rectifiers

v.DataSheet4U.com

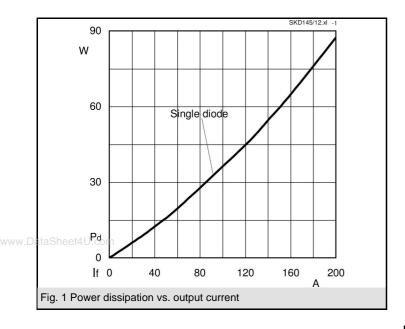
SKD 145

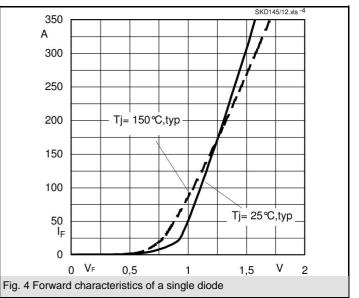
Target Data

Features

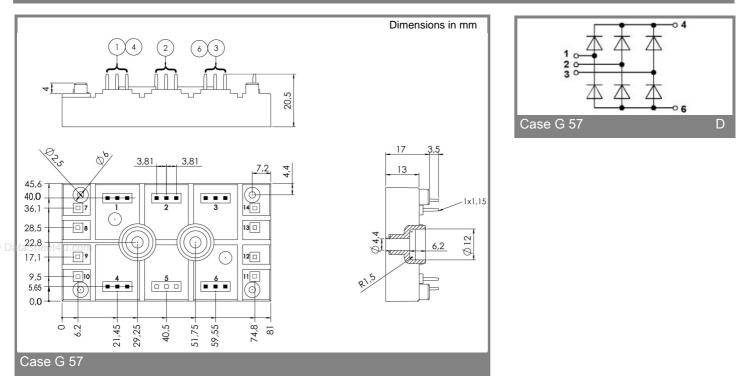

- Compact design
- SKiiP technology: thermal pressure contact, no base plate and no hard mould
- Two screws mounting
- Heat transfer and isolation through direct copper board (low R th)
- Low resistance in steady-state
 and high reliability
- High surge currents
- Up to 1800 V
- UL recognized, file no. E 63 532

Typical Applications


- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- Battery charger rectifiers


V _{RSM} V	V _{RRM} , V _{DRM} V	I _D = 140 A (full conduction) (T _s = 85 °C)
1200	1200	SKD 145/12
1600	1600	SKD 145/16
1800	1800	SKD 145/18

Symbol	Conditions	Values	Units
I _D	T _s = 85 °C	140	А
I _{FSM}	T _{vi} = 25 °C; 10 ms	1800	А
	T _{vi} = 125 °C; 10 ms	1700	А
i²t	T _{vi} = 25 °C; 8,3 10 ms	16200	A²s
	T _{vj} = 125 °C; 8,3 10 ms	14450	A²s
V _F	T _{vi} = 125 °C; I _F = 150 A	max. 1,3	V
V _(TO)	$T_{vi} = 125 \text{ °C}$	max. 0,8	V
r _T	$T_{vi}^{,j} = 125 \text{ °C}$	max. 4	mΩ
I _{RD}	T_{vj}^{3} = 25 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}		mA
			mA
R _{thjh}	per diode	0,8	K/W K/W
T _{solder}	Terminals, max 10s	260	°C
T _{vj}		- 40 + 150	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink; SI units	2,5	Nm
M _t			Nm
m		75	g
Case		G 57	



SKD 145

SKD 145

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.